## Objective

Today, we’re building on our knowledge of *Arrays* by adding another dimension.
Check out the Tutorial tab for learning materials and an instructional video!

**Context:**

Given a `6 x 6`

*2D Array*, `A`

:

```
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
```

We define an hourglass in `A`

to be a subset of values with indices falling in
this pattern in `A`

’s graphical representation:

```
a b c
d
e f g
```

There are `16`

hourglasses in `A`

, and an *hourglass sum* is the sum of an
hourglass' values.

## Task

Calculate the hourglass sum for every hourglass in `A`

, then print the
*maximum* hourglass sum.

## Input Format

There are `6`

lines of input, where each line contains `6`

space-separated
integers describing *2D Array* `A`

; every value in `A`

will be in the inclusive
range of `-9`

to `9`

.

**Constraints:**

`-9 <= A[i][j] <= 9`

`0 <= i,j <= 5`

## Output Format

Print the largest (maximum) hourglass sum found in `A`

.

## Sample 00

## input00.txt

```
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 2 4 4 0
0 0 0 2 0 0
0 0 1 2 4 0
```

### Explanation

`A`

contains the following hourglasses:

```
1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0
0 0 2 0 2 4 2 4 4 4 4 0
1 1 1 1 1 0 1 0 0 0 0 0
0 2 4 4
0 0 0 0 0 2 0 2 0 2 0 0
0 0 2 0 2 4 2 4 4 4 4 0
0 0 2 0
0 0 1 0 1 2 1 2 4 2 4 0
```

The hourglass with the maximum sum (`19`

) is:

```
2 4 4
2
1 2 4
```

## Sample 07

## input00.txt

```
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 2 4 4 0
0 0 0 2 0 0
0 0 1 2 4 0
```

## Solution

`main.go`

```
package main
import "fmt"
func main() {
A := [6][6]int{}
for i := 0; i < 6; i++ {
for j := 0; j < 6; j++ {
fmt.Scan(&A[i][j])
}
}
max := 0
for i := 0; i < 4; i++ {
for j := 0; j < 4; j++ {
hgSum := sum(A[i][j:j+3]...) + A[i+1][j+1] + sum(A[i+2][j:j+3]...)
if hgSum > max || i == 0 && j == 0 {
max = hgSum
}
}
}
fmt.Println(max)
}
func sum(nums ...int) int {
var result int
for _, v := range nums {
result += v
}
return result
}
```